Search Results : Search » SynBioWatch » Page 2

Dec 052016
 
Webridge (revised from) CC BY 2.0, via Wikimedia Commons

Webridge (revised from) CC BY 2.0, via Wikimedia Commons

CANCUN, MEXICO – This week, international conservation and environmental leaders are calling on governments at the 2016 UN Convention on Biodiversity to establish a moratorium on the controversial genetic extinction technology called gene drives.

More resources on gene drives and campaigns at CBD COP13

Gene drives, developed through new gene-editing techniques- are designed to force a particular genetically engineered trait to spread through an entire wild population – potentially changing entire species or even causing deliberate extinctions. The statement urges governments to put in place an urgent, global moratorium on the development and release of the new technology, which poses serious and potentially irreversible threats to biodiversity, as well as national sovereignty, peace and food security.

Over 160 civil society organisations from six continents have joined the call. Among them were environmental organizations including Friends of the Earth International; International Union of Food Workers representing over 10 million workers in 127 countries ; organizations representing millions of small-scale famers around the world, such as the La Via Campesina International and the International Federation of Organic Agricultural Movements; the international indigenous peoples’ organization Tebtebba; scientist coalitions including European Network of Scientists for Social and Environmental Responsibility and Unión de Científicos Comprometidos con la Sociedad (Mexico); as well as ETC Group and Third World Network.

“We lack the knowledge and understanding to release gene drives into the environment – we don’t even know what questions to ask. To deliberately drive a species to extinction has major ethical, social and environmental implications,” says Dr. Steinbrecher, representing the Federation of German Scientists. “It is essential that we pause, to allow the scientific community, local communities and society at large to debate and reflect. We can’t allow ourselves to be led by a novel technique. In the meantime, a moratorium is essential.”

“These genetic extinction technologies are false solutions to our conservation challenges,” said Dana Perls of Friends of the Earth. “We want to support truly sustainable and community driven conservation efforts. Gene drives could be co-opted by agribusiness and military interests. We need a moratorium on irreversible and irresponsible technologies such as gene drives.”

“Gene drives will be one of the fiercest debates at CBD this year,” says Jim Thomas of ETC Group. “Gene drives are advancing far too quickly in the real world, and so far are unregulated. There are already hundreds of millions of dollars pouring into gene drive development, and even reckless proposals to release gene drives within next four years.”

“The CBD is the premier international treaty for protecting biodiversity and life on earth from new threats,” said Lim Li Ching of Third World Network. “It is within the mandate of the CBD to adopt this moratorium, and countries that are party to this agreement must act now to avoid serious or irreversible harm.”

A press conference on the Call for a Moratorium will be held on December 5, 2016 at 3pm EST in the Press Conference Room. It can be live-streamed at http://flux.live/cop/coplive/pr.html.

###

Expert contacts:

English: Jim Thomas, (514) 516-5759, jim@etcgroup.org; Dana Perls, +1 (925) 705-1074, dperls@foe.org; Dr. Ricarda Steinbrecher, +44 (776) 973-3594, r.steinbrecher@econexus.info

Spanish: Silvia Ribeiro, +52 55 2653 3330, silvia@etcgroup.org; Veronica Villa, +52 1 55 5432 4679, veronica@etcgroup.org.

Communications contacts: Trudi Zundel, (226) 979-0993, trudi@etcgroup.org; Marie-Pia Rieublanc (se habla español), +52 1 967 140 4432, territorios@otrosmundoschiapas.org.

Note to Editors:

  1. A copy of the Call for a Global Moratorium on Gene Drives is available with a complete list of signatories, and a short briefing outlining the arguments for a global moratorium on gene drives prepared by the Civil Society Working Group on Gene Drives is available at http://www.synbiowatch.org/gene-drives/gene-drives-moratorium
  2. The organizers of the letter are still inviting organizations to join as signatories. Additional organizational signatures can be sent to: trudi@etcgroup.org
  3. The UN Convention on Biodiversity (CBD) is meeting from December 4-17 in Cancun, Mexico. Other synthetic biology topics are being negotiated – more background found in this media advisory: http://www.foe.org/news/news-releases/2016-12-genetic-extinction-tech-and-digital- dna-challenged
  4. In the lead up to COP 13, German Minister for the Environment Barbara Hendricks wrote a statement saying she would not support the release of gene drives into the environment. https://www.testbiotech.org/en/node/1772
  5. In September 2016, the International Union for Conservation of Nature (IUCN) adopted a de facto moratorium on the support or endorsement of research into gene drives for conservation or other purposes. At the same time, 30 leading conservationists and environmentalists called for a moratorium. More information on this moratorium is available at http://www.foe.org/news/news-releases/2016-08-genetic-extinction-technology-rejected-by- international-group-of-scientists.
  6. In June 2016, the US National Academy of Sciences released “Gene Drives on the Horizon,” a report that explored the environmental and social concerns of gene drives, and warned against the environmental release of gene drives. More information on the report can be found at http://nas-sites.org/gene-drives/
Nov 302016
 

gene-drives-image

“Genetic engineering is passé. Today, scientists aren’t just mapping genomes and manipulating genes,
they’re building life from scratch – and they’re doing it in the absence of societal debate and regulatory oversight.”
– Pat Mooney, Executive Director of ETC Group, whose mission is to access the consequences and impacts of new technologies.

Listen to the podcast here: https://www.podomatic.com/podcasts/postcarbon/episodes/2016-11-28T15_39_01-08_00

KWMR Post Carbon Radio:

Our two guests are: Claire Hope Cummings, author of Uncertain Peril: Genetic Engineering and the Future of Seeds. Her concerns are how gene drives are proposed for use in conservation (Island Conservation’s daughterless mouse) and the whole idea of the eradication of the female (daughterless anything) and anything people need to know about the regulatory issues – most notably that there is no regulatory response to these new developments and the response to GMOs was terribly inadequate and facilitated widespread contamination, among other risks which are still a problem.

Jim Thomas is a Research Programme Manager and Writer at ETC Group, located in Ottawa, Canada. His background is in communications, writing on emerging technologies and international campaigning. For the seven years previous to joining ETC Group Jim was a researcher and campaigner on Genetic Engineering and food issues for Greenpeace International – working in Europe, North America, Australia/New Zealand and South East Asia. He has extensive experience on issues around transgenic crops and nanotechnologies has written articles, chapters and technical reports in the media and online.

Nov 212016
 

vat-768x432by Mary Lou McDonald (Safe Food Matters)

New words like “synthetic biology”, “GMOs 2.0”, “CRISPR”, and “new biology” are being heard.  And new compounds are in our fragrances, flavourings, cosmetics and foods.

The new words are for new techniques of genetic engineering. What are the techniques and their products, and should we be concerned?

New Techniques­

The old techniques of genetic engineering (GMOs 1.0) dealt with organisms, and inserted genes by either blasting them into an organism or transferring them via a virus. This was not very precise.

1. Gene Editing. A new technique is called “gene editing”. It is more on target. It can cut the genetic code of organisms with greater precision, insert new code, remove a code and swap out genes with others. Tools used in gene editing include “CRISPR-Cas9”, “Zinc Finger Nucleus” and “TALEN”.

2. Synthetic Biology. Another new technique is the creation of genetic code from scratch, without involving living organisms. This is called “synthetic biology” or “put together life”. It uses computer design technology to engineer and produce new codes in the lab.

Applications and Technologies

These techniques, when applied, have resulted in far-reaching technologies.

a) Applications of Gene Editing

Gene Drives.  A much talked-about technology is “gene drives”.  It drives the particular gene down to the offspring and doesn’t allow space for an alternate to arise, as would occur in natural evolution. Once a trait is forced down at the expense of the alternatives, the extinction of the “alternate” offspring is the ultimate result.

Gene drives have so far been used on yeast, fruit flies and 2 mosquito species, but have not yet been released to ecosystems. There is widespread discussion about using them to eradicate mice on islands, mosquitoes, and pests.

GMOs 2.0.  Gene editing is also used in agriculture, the old domain of GMOs 1.0. With GMOs 2.0, food is being engineered to insert, delete or replace DNA, and entirely new sequences are being created. Gene edited mushrooms (deletions in a gene for non-browning) and canola oil (a gene removed to tolerate herbicide) have both been commercialized. Monsanto in September, 2016 licensed the use of CRISPR to engineer food and Dupont in October 2015 predicted that CRISPR plants would be on dinner plates within 5 years. Proponents of gene editing argue that the resulting organisms are not “GM” or “novel substances”, and therefore aren’t subject to current regulation.

b) Applications of SynBio

Foods, Flavours, Fragrances. The synbio technique has spawned many new applications, including the creation of new compounds in consumer products that are so similar to existing products consumers can’t tell the difference.  The method used is to engineer artificial code into microbes and then ferment them on a large scale in vats. Manufacturers use the word “natural” because fermentation is involved.

Some existing and proposed products resulting from this application are artificial biofuels, vanilla, stevia, ginseng, wine, mint, cocoa, caffeine, scents, cleansers and soaps. (See “Are GMOs 2.0 in your Food and Cosmetics”; “What is Synthetic Biology: The Comic Book”).

New Life Forms. Another application is the engineering of completely new genetic codes and life forms. Current players in this sphere include the “DIY” community, students, and start-ups.  A code can be created on the computer and 3-D printed. The International Genetically Engineered Machine Competition (IGEM) is a university and high school competition for building “biobricks” (like lego) to operate in living cells. A recent commercial example of a new life form is a plant that glows in the dark.

Bio Weapons. A third application is military.  In the US, the Defense Advanced Research Projects Agency (DARPA) provides the most funding for synthetic biology in the US government (although the extent to which this is funnelled to bioweapons is not known). In the US, the Army, Navy and Office of the Secretary of State are also funding synbio. (See Extreme Genetic Engineering and the Human Future, p 31).

What is the Concern?

The concern is we don’t know if the new technologies are safe. Why not? Because we don’t completely understand the interactions that occur in living organisms and ecological systems.

Organisms are complex systems in which chemical reactions “fire” at different times and places along interconnected pathways. They do not behave in linear “cause and equal effect” ways, in either space or time. A gene is part of this system. It is a strand of DNA that messages or “fires” at times (or refrains from “firing”) and brings about an action or change in an organism. Similarly, ecological systems are complex systems.  They rely on species interconnections and interactions which also don’t behave in linear “cause and equal effect” ways.

If a complex system does not behave in a linear fashion, the workings of the systems cannot be known ahead of time and its effects cannot be predicted.  Similarly, the effects resulting from a change to one aspect of a system cannot be predicted. The effects can only be known “after the fact”, and, depending on the system, these effects may vary.

This inability to predict the results of a change in the system was the problem with GMOs 1.0, and is the same problem with these new techniques.  The concern will exist every time one of the new techniques is used in a complex living system. The scientific literature even acknowledges that there are often “unintended” or “unpredicted effects” associated with the products of genetic manipulation.  New substances are often created. Even CRISPR-Cas9 technology admittedly has the problem of being “off-target”.

Historical Examples 

The concern of unpredictability is underlined by historical examples of GMOs 1.0 gone wrong. In the late 1990s and early 2000s several people died as a result of reactions to gene therapy procedures, the most notable of which was 18 year old Jesse Gelsinger.  He died from a severe immune reaction to the viral vector used to transport engineered genes. Another example is the food supplement L-Tryptophan.  Genetic modification of the supplement created a new toxin that is linked to EMS, a disease that killed 80 people and afflicted thousands in the late 1980s, early 1990s.  (See “L-Tryptophan”).

Examples of agriculture GMOs 1.0 gone wrong include the case of canola. In 1995 Canada became the first country to approve commercialization of genetically engineered canola. GM canola has now spread and eliminated natural canola almost everywhere in Canada. Other examples of GM plants that have spread uncontrollably are: creeping bentgrass in the USA; cotton and maize in Mexico; BT poplar in China; Bt rice in China; and canola in Japan, the US, Australia and the EU. (See Transgene Escape by TestBiotech).

Supersized Concerns

The concern of unpredictability is more pronounced with these new synbio and gene editing techniques than with GMOs 1.0. Reason? The applications of these new techniques are very broad in scope, and their effects can be devastating.

Gene Drives. The scope of gene drives is obviously major. It extends to the possible extinction of a species, and resulting degradation of its ecosystem.  Even the National Academy of Sciences of the US, in a June 2016 report (at 86), admits that: “[R]eleasing a gene-drive modified organism into the environment means that a complex molecular system will be introduced into complex ecological systems, potentially setting off a cascade of population dynamics and evolutionary processes that could have numerous reverberating effects”.

GMOs 2.0. The scope of GMOs 2.0 extends to the food humans and animals eat and to the environment. The lack of current regulation and the speed at which the products are being advanced means the GMO 2.0 technologies and products will likely be used before they are assessed. This is even though the effects with GMOs 2.0 are compounded.  Testbiotech indicates that with the new gene editing techniques, a single step can be applied several times, causing large changes; plants and animals with genetic changes can be crossed with each other;  different techniques can be used in combination with each other; and that even small steps, if repeated, enable radical changes in the genome.

Foods, Flavours, Fragrances. The scope of the synbio application is enormous, on many fronts. The flavours and fragrance market is advancing quickly:  it was a US $26.5 billion market in 2016 and is expected to grow to over US $35 billion by 2019. Lux Research indicates synbio will be a “permanent and growing aspect” of the flavours market. A major socioeconomic effect is the displacement of natural botanical farmers: 95% of varieties of natural crops are grown by small-scale farmers, more than 20 million of whom depend on these crops for their livelihood.

The new compounds themselves are pervasive in our consumer products without being identified (except they might be called “natural”).  Common names include:  method, Ecover, patchouli, PeterThomasRoth, Evolva, Clearwood, TerraVia, Neossance Biossance, Eversweet (in Coca Cola Life), Agarwood Oil, Muufri animal free milk, among others.  The effect of these compounds on human beings has not been subject to regulatory assessment, even though they are biologically different than the natural botanical substances.

New Life Forms.  The synbio creation of new life forms in the DIY community is advancing, and there is no way to monitor the proliferation of this technology. The September 2016 report of Genome editing: an ethical review points out that a number of websites provide lab and other support services for amateurs, and DIY CRISPR kits are available on line.  A code can be 3-D printed and Fedexed for less than $100. The seeds and kit for the new glowing plant can be ordered on-line. The potential for intentional and unintentional release obviously exists, again with no regulations in place.

BioWeapons. The scope of the military application of synbio is not known, but appears to be growing as increasing amounts of government funding are directed toward the technology. The obvious risks are the inability to recall a release, and the potential for a release to be off-target.

In Sum

New technologies are advancing quickly and new products and substances are in our world.  Genes can now be created from scratch, a wide array of new products and foods can be created with greater precision, and whole species can be affected. The concerns around safety and unpredictability are the same, but the resulting risk profile has increased dramatically. We would do well to learn the new words.

Oct 202016
 
tobacco

Tobacco plantation. Ikhlasul Amal/Flickr CC

by Chee Yoke Ling and Edward Hammond (Project Syndicate)

AUSTIN, TEXAS – Four hundred years ago, John Rolfe used tobacco seeds pilfered from the West Indies to develop Virginia’s first profitable export, undermining the tobacco trade of Spain’s Caribbean colonies. More than 200 years later, another Briton, Henry Wickham, took seeds for a rubber-bearing tree from Brazil to Asia – via that great colonialist institution, London’s Royal Botanic Gardens – thereby setting the stage for the eventual demise of the Amazonian rubber boom.

At a time of unregulated plant exports, all it took was a suitcase full of seeds to damage livelihoods and even entire economies. Thanks to advances in genetics, it may soon take even less.

To be sure, over the last few decades, great strides have been made in regulating the deliberate movement of the genetic material of animals, plants, and other living things across borders. The 1992 United Nations Convention on Biological Diversity, in particular, has helped to safeguard the rights of providers of genetic resources – such as (ideally) the farmers and indigenous people who have protected and nurtured valuable genes – by enshrining national sovereignty over biodiversity.

While some people surely manage to evade regulations, laboriously developed legal systems ensure that it is far from easy. The majority of international exchanges of seeds, plants, animals, microbes, and other biological goods are accompanied by the requisite permits, including a material transfer agreement.

But what if one did not have to send any material at all? What if all it took to usurp the desired seeds was a simple email? What if, with only gene sequences, scientists could “animate” the appropriate genetic material? Such Internet-facilitated exchanges of biodiversity would clearly be much harder to regulate. And, with gene sequencing becoming faster and cheaper than ever, and gene-editing technology advancing rapidly, such exchanges may be possible sooner than you think.

In fact, genes, even entire organisms, can already move virtually – squishy and biological at each end, but nothing more than a series of ones and zeros while en route. The tiny virus that causes influenza is a leading-edge example of technical developments.

Today, when a new strain of influenza appears in Asia, scientists collect a throat swab, isolate the virus, and run the strain’s genetic sequence. If they then post that strain’s sequence on the Internet, American and European laboratories may be able to synthesize the new virus from the downloaded data faster and more easily than if they wait for a courier to deliver a physical sample. The virus can spread faster electronically than it does in nature.

More complicated viruses and some bacteria are in the range of such techniques today, though wholly synthesizing a higher organism with a more complex genome, such as maize, is many years away. But that may not matter, as new gene-editing technologies, like CRISPR-Cas9, enable scientists to stitch together complicated new organisms, using gene sequence information from organisms to which they do not have physical access.

For example, the key traits of a drought-resistant maize from a Zapotec community in Oaxaca, Mexico, might be reproduced by editing the genes of another maize variety. No major new advance in the technology is needed to unlock this possibility.

What is needed is the genetic sequences of thousands of types of maize. Those data act as a sort of roadmap and resource pool, enabling scientists to compare sequences on a computer screen and identify pertinent variations. The selected adjustments might then be made to, say, the parents of a new Monsanto or DuPont Pioneer maize hybrid.

Managing access to large genomic databases thus becomes critically important to prevent a virtual version of the theft carried out by Rolfe and Wickham. And, indeed, in an unguarded e-mail released under the US Freedom of Information Act, one of the US Department of Agriculture’s top maize scientists, Edward Buckler, called such management “the big issue of our time” for plant breeding.

If agricultural biotechnology corporations like Monsanto and DuPont Pioneer – not to mention other firms that work with genetic resources, including pharmaceutical companies and synthetic biology startups – have free access to such databases, the providers of the desired genes are very likely to lose out. These are, after all, wholly capitalist enterprises, with little financial incentive to look out for the little guy.

In this case, that “little guy” could be African sorghum growers, traditional medicinal practitioners, forest peoples, or other traditional communities – people who have created and nurtured biodiversity, but never had the hubris or greed to claim the genes as proprietary, patented inventions. All it would take is for someone to sequence their creations, and share the data in open databases.

Yet open access is the mode du jour in sharing research data. The US government’s GenBank, for example, doesn’t even have an agreement banning misappropriation. This must change. After all, such no-strings-attached databases do not just facilitate sharing; they enable stealing.

The question of how to regulate access to genetic sequence data is now cropping up in international discussions, including at the World Health Organization and the Food and Agriculture Organization. Perhaps the most important forum for such discussions is the Conference of the Parties to the Convention on Biological Diversity, the main treaty regulating access to biodiversity. The next meeting (COP 13) will take place in Cancún, Mexico, in early December.

Participants at COP 13 must focus on the need to protect the rights of resource providers. To this end, they should pursue a careful assessment of existing policies and craft the necessary changes – before synthetic biology outpaces legal systems and renders them impotent.

Arrangements must be made to supervise access to genetic sequences in a way that ensures fair and equitable sharing of benefits from their use. Otherwise, decades of work to promote conservation and prevent piracy will be undermined, endangering the biodiversity convention – and those it protects

Oct 102016
 

gene-editingby Melody Meyer (Organic Matters)

In an early morning jaunt to Sacramento last week my car was rear ended.  I serve on the California Organic Products Advisory Committee (who by the way are looking for new members), and was on my way to attend a subcommittee meeting when boom—a fine young man rammed me in the rear. As I recuperate from the trauma, I wax philosophical and wonder why this happened and what the long term unintended consequences will be. The same ruminations can be applied to the novel gene editing techniques that are racing towards us with accelerating speed. Are we all on a genetic collision course with unintended consequences? 

As I mull over the details of that 5am departure, I wonder how two strangers woke up, made coffee, and rambled into their cars just to crash into each other at that moment in space and time. What trajectory was I launched on when I circled back and grabbed my lunch bag? What velocity did I drive just so I arrived at that spot for him to anoint me with pounding steel; up the bottom of the carriage so to speak?

The same musings can be mulled over for many of the new gene editing techniques that aren’t classified as GMO’s. From the first time we stood up on the Savanna and picked up that primal tool, were we fatefully launched on a trajectory course that would end in manipulating the very core of life itself? Our propensity for tinkering coupled with our big brains has landed us now in a godlike place where we can alter the very genetic code of life. Will there be unintended consequences?

History (and my sore neck) tells me that there always will be unintended consequences. If you look at the history of DDT, Agent Orange and TNT, they all have had negative accidental aftereffects. We now know that the rise of (traditionally) genetically engineered, herbicide-resistant crops has resulted in a huge increase in herbicide use and the rise of superweeds as a result. Chuck Benbrook has made that point many times.

The hottest and most cutting-edge GMO techniques aren’t even recognized as GMO’s. Scientists can now precisely edit unique traits within one species by using a technique called Crispr-cas9, which works like a pair of molecular scissors, snipping away this trait and inserting yet another. In fact the technology goes so far that it can now force the trait to persist forever more by using “gene drives.” Entire populations can now be genetically altered to always inherit that unique trait or even make the entire species crash. Sound like science fiction? Nope it’s here today and throttling towards us at breakneck speed.

My young driver was good hearted and intended me no harm. Just so the scientists working on these novel techniques are well intentioned mavens of research and genius, hoping to make the world a better place. Gene drives have been proposed as a technique for changing wild populations, for instance to combat mosquitoes that spread malaria and zika, to control invasive species, or to eliminate herbicide and or pesticide resistance in superweeds.

These cutting-edge gene editing techniques could potentially block the inheritance of many diseases such as cystic fibrosis. They could also lead to custom-made children where parents pick and choose the traits of their progeny.

The problem I have is that none of these techniques are regulated or transparently tested for safety. In fact many of these techniques are readily available and easily accessible to anyone who has access to the internet and half a propensity for scientific tinkering. A report by Nuffield Council on Bioethics warns that the simplicity and low cost of tools to edit the genetic code means that “garage scientists” pose a potential risk from the release of GM bugs. Sounds like unintended consequences barreling down upon us.

The report goes on to state and I quote “Genome-edited organisms (as with all genetically modified organisms or GMOs) pose a possible risk of harm to those handling them, and to others or to natural ecosystems if they are released or escape from controlled environments. Most countries have layers of regulation which cover the handling, transport and release of GMOs, but there are concerns about how these can be managed outside of regulated environments.”

Genetically modifying plants is far from harmless as this article points out. “Techniques of genetic modification, old or new, are not fully mastered: if they do allow bringing some new traits to a living organism (such as herbicide tolerance), they also produce unexpected modifications: ‘off-targets’ effects caused by the techniques such as mutations and epigenetic mutations, because of the techniques implemented during the process.”

What do we do now that we are crashing through the penetrable walls of subatomic DNA barriers with no regulation or oversight? Should we step outside the vehicle and access the possible damage? We are no longer messing around with a lone area of our ecosystem but potentially the very building blocks of our genetic heritage and legacy. We can and are impacting life itself on the planet.

The first path to regulations is to become aware of the speeding carriage barreling towards us. Friends of The Earth and ETC Group recently published the Shopper’s Guide to Synthetic Biology to help consumers like you avoid the new wave of GMOs in food and cosmetics, and find truly natural and sustainable options.

The National Organic Program and the National Organic Standards Board are requesting comments on whether these new techniques should be allowed in organic production.

The unintended consequences of this new technological collision course must be explored and challenged. If you need a license to drive a car, shouldn’t you have a license and some rules of the road to do gene editing? Shouldn’t we have safety tests, belts and cameras in place to assure we don’t crash our genetic inheritance?

Let’s urge governments worldwide to put some restraints on these new technologies while putting processes in place to evaluate those we cannot yet dream of. The speeding vehicle is coming.

Oct 032016
 
Waag Society/Flickr CC

Waag Society/Flickr CC

by Eric Meunier (Inf’OGM)

Several new techniques of genetic modification (also called NBT) are currently being discussed worldwide to decide whether to define products obtained from them as GMOs and to regulate them as such, or not. Following a parliamentary hearing in France [1] in April 2016, Inf’OGM tries to figure out some of the potential risks linked to the use of any technique of genetic modification on a plant cells culture.

Techniques of genetic modification, old or new, are not fully mastered : if they do allow bringing some new traits to a living organism (such as herbicide tolerance), they also produce unexpected modifications : ‘off-targets’ effects caused by the techniques of genetic modification themselves as they do not occur in the targeted area of the genome and unintended effects (mutations and epigenetic mutations, also called epimutations) due to other techniques implemented during the different steps of the process.

On April 2016 the 6th, echoing Yves Bertheau’s remarks back in late 2015 (a former member of the French High Council of Biotechnology (HCB) after having resigned), Jean-Christophe Pagès, Head of the HCB’s scientific committee, told the French Parliamentary Office for Science and Technology Assessment about Crispr/Cas 9 that “the difficulties to use it should not be forgotten […] especially regarding in vivo use on animals as you need to provide a matrix and you usually face issues linked to the process of insertion into the cell. In vitro culture is much easier and this is why the majority of its uses are in research and, eventually, organisms are regenerated from in vitro culture. And here, it indeed concerns some plants”… A surprising comment as, after a careful reading, the HCB’s scientific committee document dated from February 2016 the 4th – now downgraded to an interim report status after having been presented by the Scientific Committee as an advice to the French government – do not state such difficulties in vivo, or ease in vitro.

Inf’OGM provides here in a first series of two papers as an overview of the unintended and uncontrolled effects occurring along the steps of a genetic modification process. We will focus in these first paper on the process of insertion step as quoted by Jean-Christophe Pagès, aiming at bringing into a cell the requisite material to generate the intended genetic modification. We will also focus on preliminary steps which are indeed stressful and thus induce mutations and epigenetic mutations (see the box below).

In a next wave of papers we will focus on the unexpected changes called ‘off-targets’ due to the NBT techniques themselves. Several scientific papers will be rapidly cited to help the reader to go more in depth in the details.

Mutation, epigenetic mutation (epimutation) = what is it ?

A mutation is usually defined as a change in the genetic information of an organism, whether it be as DNA or RNA. Mutations are hereditary. They can be “silenced”, meaning without any observable consequences on the organism’s metabolism. They can also change the expression of one or several genes, modifying the metabolism. Epigenetic mutations belong to the class of mutation affecting the expression of a genetic sequence but which are not due to a change in the nucleotide sequence itself. They can be due to a change of the chemical composition of DNA nucleotides or chromatin.

Preparing the cells to be transformed

Before being able to bring some material into the cells (the process of insertion Jean-Christophe Pagès refers to), the first step is to prepare those cells. The lab workers will have to break cells wall, maybe even to remove them entirely. Plant cells without walls – called protoplasts – become transformable and engineers can now bring into those cells tools such as large proteins (such as Cas9), RNAs and/or coding DNAs. But, as Yves Bertheau explains, this creation of protoplasts induces mutations and epimutations, a widely observed phenomenon according to scientific literature [2].

Cell culture induces mutations

The second step is to cultivate those protoplasts. But culturing cells generates also mutations and epigenetic mutations. The scientific literature surprisingly shows that the mechanisms through which those mutations and epigenetic mutations appear is still little-known despite decades of use [3]. This phenomenon, called somaclonal variation, is such that it was previously used by seed companies to create the needed “genetic diversity” to “breed” plants according to the seed companies’ usual language. The French Association for Seeds and Seedlings (GNIS, “a privately funded organization which delivers public services”) points out that “somaclonal variation is the observed modification in some cells after a long cycle of in vitro culture without regeneration. These are therefore no longer identical to the parent plant. This variation can be due to a modification in the nucleus genome or in the genome of cytoplasmic plastids [4].

In other words, plants obtained from those cells have different characteristics. GNIS provides one last interesting detail : “the obtained modifications of traits are barely stable and not always found in the regenerated plant or its progeny”. Why ? The occurrence of other modifications (epigenetic mutations) can make those mutations disappear [5]… As Yves Bertheau tells us, “in such conditions, it looks rather difficult to foresee the impacts this step of cell culture could perform when using a new technique of genetic modification”.

The process of insertion, at last… also called vectorization

Once the cells are prepared and cultivated, we are ready to bring in the biological material to generate the intended modification. Depending on the techniques, this material may be proteins and / or genetic sequences such as RNAs or encoding DNAs (oligonucleotides, plasmids, virus…) – the most frequently used molecules for plants. Bringing this material into the cells needs merely making large holes in the membranes (cytoplasmic and nuclear) of the cell. But, as Yves Bertheau explains us, making such holes induce once again mutations and epimutations [6]. The researcher considers thus impossible to draw a general grid for risk assessment. A choice must be made among several techniques of insertion, different types of material, the genetic sequences to be introduced and the species targeted. Therefore only a case by case analysis for such GMOs would allow the assessment of all the potential risks linked to unintended effects.

HCB’s scientific committee’s interim report says nothing about those mutations

In a scientific paper of 2011, scientists estimated that 35% of all the observed unintended effects following the genetic modification by transgenesis of Senia rice were due to the cells transformation process itself [7]. The phenomenon is therefore not negligible.

Surprisingly, and despite the hearing of its Head in front of the OPECST, the HCB’s Scientific Committee did not deal with those risks in its interim report on risks linked to the new techniques [8]. If the process of insertion is indeed described in the appendix for each technique, it’s only to outline the tools used for a technique and to describe how the material is brought into the cells. Possible mutations and epimutations arising from the different transformation steps are not covered. As the HCB scientific committee is in charge of risk evaluation for the French government, we would have expected this committee to discuss and provide explanations, not to disregard such documented issues. Especially considering that the transformation process – to refer to the only point present in the interim report – doesn’t seem to be fully controlled depending on the techniques. The scientific committee even states that for the oligodirected mutagenesis technique (OdM), “many molecules or molecular mixtures are currently tested to improve the process of insertion which works fairly well in vitro but not well on full organisms (Liang et al., 2012) [9]

 

[2« Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization », Florentin, A. et al. (2013), Developmental Dynamics, 242(10), 1121-1133 ;
« Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress », Skirycz, A. et al., (2010). Plant Physiology, 152(1), 226-244 ;
« Arabidopsis mesophyll protoplasts : a versatile cell system for transient gene expression analysis », Yoo, S.-D.et al. (2007). Nat. Protocols, 2(7), 1565-1572.

[3« Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles », Krizova, K. et al., (2009). Plant Physiology, 149(3), 1493-1504 ;
« Extended metAFLP approach in studies of tissue culture induced variation (TCIV) in triticale », Machczyńska, J. et al., (2014). Molecular Breeding, 34(3), 845-854 ;
« Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize », Rhee, Y. et al., (2010). Genetics, 186(3), 843-855 ;
« Transformation-induced mutations in transgenic plants : analysis and biosafety implications », Wilson, A.K. et al., (2006). Biotechnol Genet Eng Rev, 23(1), 209-238 ;
« A whole-genome analysis of a transgenic rice seed-based edible vaccine against cedar pollen allergy », Kawakatsu, T. et al., (2013).. DNA Research 20, 623-631 ;
« Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications », Neelakandan et al.,, 2012,. Plant Cell Reports, 31(4), 597-620

[5« Meiotic transmission of epigenetic changes in the cell-division factor requirement of plant cells », Meins, F. et al., (2003). Development, 130(25), 6201-6208.

[6« Cell biology : delivering tough cargo into cells », Marx, V. (2016). Nat Meth, 13(1), 37-40.

[7« Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene », Montero, M. et al., (2011). Plant Biotechnology Journal, 9(6), 693-702.

Sep 302016
 
petri-dish

HCC Public Information Office via Flickr CC

by Ian Sample (the Guardian)

Nuffield Council on Bioethics report finds materials to perform basic experiments are now available to ‘garage scientists’

The simplicity and low cost of tools to edit the genetic code means “garage scientists” – or amateurs with some skill – can now perform their own experiments, posing a potential risk from the release of GM bugs, a new report suggests.

In a report published on Friday, the Nuffield Council on Bioethics said that the rise in precision “gene editing” tools had revolutionised biomedical research over the past ten years and could potentially have a dramatic impact on human society.

But it found that the materials needed to perform basic experiments were available to enthusiasts outside academia and established labs. This year, one firm began to sell a kit for £100 to DIY biology interest groups that allowed them to render the common soil microbe, E coli, resistant to the antibiotic streptomycin.

The report goes on to say that genetic technology has become so powerful that nations need to decide whether or not doctors should ever be allowed to modify the human species.

While the creation of GM humans is not on the horizon yet, the risks and benefits of modifying a person’s genome – and having those changes pass on to future generations – are so complex that they demand urgent ethical scrutiny, the review found.

“This could transform our range of expectations and ambitions about how humans control our world,” said Andrew Greenfield, a geneticist and chair of the Nuffield Council’s working group. “Although most uses so far have been in research, the potential applications seem to be almost unlimited.”

Genome editing has become a common tool in laboratories around the world. The most common technique, called Crispr-cas9, works like a pair of molecular scissors. It is essentially a pair of enzymes that can be designed to find and remove a specific strand of DNA inside a cell, and then replace it with a new piece of genetic material. The procedure can be used to rewrite single letters of genetic code and even whole genes.

The report found that gene editing could potentially block the inheritance of cystic fibrosis and more than 4000 other known conditions caused by single faulty genes. But the technique may also drive profound changes in farming, the report found, where the possibilities range from swine fever-resistant pigs, chickens that only give birth to females, and hornless cows that could be housed in smaller spaces. Because Crispr-cas9 does not leave any traces, meat and other products from GM animals could find its way to market without being labelled. Meanwhile, the simplicity and low cost of Crispr-cas9 means amateurs in the home can now perform their own experiments.

Altering the genetic makeup of a human embryo and transplanting it into a woman is banned in Britain, but there are ethical arguments in favour of the procedure, such as preventing children from inheriting genes that cause fatal diseases. But if the procedure were allowed, some fear it could open the door to what the report calls “consumer” or “liberal eugenics” where children are modified to suit their parents’ preferences.

“We’ve identified human reproductive applications as an area that demands urgent ethical scrutiny and we must consider carefully how to respond to this possibility now well before it becomes a practical choice,” said Karen Yeung, a law professor at King’s College London, and co-author of the report.

Scientists have already begun to edit the genes of human embryos, but only for basic research. Earlier this year, researchers in China tried to add HIV resistance to human IVF embryos which had been donated to science when tests found them to be unviable. The experiments did not achieve their goal, but highlighted how difficult the procedure was likely to be in humans.

In 2015 another Chinese team became the first in the world to edit human embryos, when they tried, and failed, to modify a gene that causes beta-thalassaemia, a potentially fatal blood disorder. Again, the work was performed on abnormal IVF embryos donated to research.

From a purely medical standpoint, there are good reasons to correct faulty genes at the embryo stage, because the defective DNA is then erased from every cell in the body. The risk comes when the modification has unintended consequences. This could harm not only the child, but their future children, because the altered gene would be in their sperm or eggs.

In light of the report, the Nuffield Council has set up two new reviews to look specifically at the ethics of gene editing in human reproduction and livestock. One major question will be where to draw the line on what is acceptable if gene editing is approved in humans, in principle. It may be morally acceptable to correct a faulty gene that will definitely pass on a fatal disease to a child. But what about a gene that has a chance of raising by 10% a person’s risk of heart disease or Alzheimer’s? The report notes that in the future, it may be possible to enhance people with genes from other organisms, for example to improve night vision and sense of smell.

“It is only right that we acknowledge where this new science may lead and explore the possible paths ahead to ensure the one on which we set out today is the right one,” said Yeung.

Sep 162016
 

bulliards_etc_cartoon

by ETC Group

Policymakers could still block the agribiz mergers; peasants and farmers will continue the fight for seeds and rights

Wednesday’s confirmation that Monsanto and Bayer have agreed to a $66 billion merger is just the latest of four M&A announcements, but at least three more game-changing mergers are in play (and flying under the radar).  The acquisition activity is no longer just about seeds and pesticides but about global control of agricultural inputs and world food security.  Anti-competition regulators should block these mergers everywhere, and particularly in the emerging markets of the Global South, as the new mega companies will greatly expand their power and outcompete national enterprises.  Four of the world’s top 10 agrochemical purchasing countries are in the global South and account for 28% of the world market.[1] If some of these throw up barriers, shareholders will rebel against the deals regardless of decisions in Washington or Brussels.

“These deals are not just about seeds and pesticides, but also about who will control Big Data in agriculture,” says Pat Mooney of ETC Group, an International Civil Society Organization headquartered in Canada that monitors agribusiness and agricultural technologies. “The company that can dominate seed, soil and weather data and crunch new genomics information will inevitably gain control of global agricultural inputs – seeds, pesticides, fertilizers and farm machinery.”

Neth Daño, ETC’s Asia Director, continues, “Farmers and regulators should be watching out for the seventh M&A – John Deere and Company’s bid to merge its Big Data expertise with Monsanto-owned Precision Planting LLD. After the Bayer-Monsanto merger, it’s not clear whether Precision Planting will go to Deere and Co. or if Bayer will protect its future in agricultural data.” Daño, based in the Philippines, points out that “Deere started connecting its farm machinery to GPS in 2001 and since then has invested heavily in sensors that can track and adjust seed, pesticide and fertilizer inputs meter by meter. The company has 15 years of historic data as well as access to terabytes of other weather, production and market data. Quite literally, Deere and the other farm machinery companies (the top three account for half of the world market) own the box in which the other input enterprises have to dump their products. That means Deere also owns the information.”

Silvia Ribeiro, Director of ETC’s Latin American office, agrees that the latest news confirming Monsanto agreement has “created alarm throughout Latin America and raised big concerns about increased input prices, more privatization of research and huge pressure from these Giant companies to make laws and regulations in our countries that allow them to dominate markets, crush farmers’ rights and make peasant seeds illegal.”

Although the mergers will be contested at the national level around the world, Neth Daño in the Philippines and Silvia Ribeiro in Mexico see the battle moving to a number of international fora in the weeks and months ahead. Daño will be in Indonesia September 27 – 30 when governments, farmers’ organizations and civil society meet to discuss Farmers Rights as part of a legally binding treaty intended to guarantee farmers access and use of seed. “This is an international seed meeting that can’t avoid addressing these mergers,” she asserts. “The hottest topic on the agenda is a Big Data proposal for seeds being pushed by the companies.”

October 17 – 21, Pat Mooney and Silvia Ribeiro will be in Rome attending the UN’s Committee on World Food Security. “Virtually all of the world’s governments, farmer organizations and many agribusinesses companies will be in the same room for a week, with food security on the official agenda. There are going to be a lot of angry people there wanting to stop these mergers,” Ribeiro insists.

December 4–17, the UN Convention on Biological Diversity will be meeting in Mexico where agricultural biodiversity issues are on the agenda. The Convention is famously proactive on seed issues having already set a moratorium against Terminator seeds (seeds genetically modified to die at harvest time forcing farmers to purchase new seeds every growing season) and, as well, a protocol on the trans-boundary movement of transgenic seeds and another protocol that will soon enter into force related to loss and damages caused by GM contamination. When it meets in December, it will debate the risks of a suite of new plant breeding technologies described as “extreme genetic engineering” (synthetic biology) which is much favoured by all the companies now merging as a strategy to sidestep biotech regulations. “Wherever these companies go in the next few months, they are going to have a fight on their hands,” says Silvia Ribeiro.

For further information:

Pat Mooney, Executive Director, ETC Group: 1-613-240-0045 or mooney@etcgroup.org

Neth Daño, Asia Director, ETC Group: +63 917 532 9369 or neth@etcgroup.org

Silvia Ribeiro, Latin America Director, ETC Group: + 52 1 5526 5333 30 or silvia@etcgroup.org

M&As – Public and Not-So Public

The buying spree started in July 2014 when Monsanto (the world’s #1 seed company; #5 In agrochemicals[2]) launched the first of three runs at Syngenta (#1 in crop chemicals; #3 in seeds[3]).  All offers were rebuffed. Nevertheless, the gambit set all of the Big Six seed/chemical companies in motion…

1.     November 2015 –  ChemChina (who owns the world’s 7th-largest agrochemical company, ADAMA[4]) made a $42 billion bid for Syngenta.[5]  The offer (bumped up to $43 billion) was accepted in February 2016.[6] The deal has passed one of several regulatory hurdles in the USA,[7] but faces challenges in numerous other jurisdictions including, apparently, Canada, Brazil and the EU. It is expected to close by the end of 2016.[8] The merger will give ChemChina “a way to diversify beyond agrochemicals into GM seed technology.”[9]

2.     December 2015 – Dupont (#2 in seeds, #6 in pesticides[10]) and Dow (#5 in seeds, #4 in pesticides[11]) announced their $68 billion merger. It is still pending and under review by antitrust regulators,[12] and the companies optimistically claimed the deal will be done by the end of the year.

3.     May 2016 –  Bayer (#2 in crop chemicals; #7 in seeds[13]) low-balled a bid for Monsanto[14] but the companies eventually reached a deal for $66 billion on September 14 and predict closure by the end of 2017.[15]

4.    August, 2016 – Potash Corp. (#1 in synthetic fertilizers by capacity,[16] #4 by market share[17]) began negotiations with Agrium (#2 in fertilizers by market share[18]).  The deal was agreed September 12, 2016, and was valued at $30 billion. Aside from making the new entity the undisputed No. 1 in fertilizers, it also broadens the base of the enterprise to include seeds and crop chemicals.[19] The deal is expected to close in mid-2017.[20]

As the four negotiations went back and forth, the world’s other significant seed, chemical and fertilizer companies were looking on with a mixture of consternation and anticipation. Since it is highly unlikely that all four mergers can play through without divestitures, ETC predicts that at least two other M&A options are coming down the pipeline…

5.     BASF (#3 in crop chemicals and a modest player in seeds[21]) either has to get bigger or get out, and is undoubtedly calculating the possibility of snapping up any smaller seed and pesticide companies that fall by the wayside if the other mergers proceed. Its second option is to go after the second-string of German, Dutch, US and Japanese seed/pesticide companies to cobble together a larger agricultural footprint.

6.    The same second-string players may be thinking of doing the same thing—either picking up the leftovers or merging themselves. Though alarming to smaller companies, the mashing together of the giant companies also leaves them niches of opportunity.

But a 7th M&A has been playing off stage; important on its own, but also a harbinger of much bigger changes that will impact global agricultural inputs in the months and years ahead…

November 2015 –  Deere & Co. (#1 in farm machinery and nothing much in seeds or chemicals[22]). agreed to buy Monsanto’s Precision Planting LLD.[23] In August 2016, however, Deere was sued by the US Justice Department to block the deal[24] because the merger would allow Deere to “dominate the market for high-speed precision-planting systems and be able to raise prices and slow innovation at the expense of American farmers who rely on these systems”[25]:  Deere and Precision Planting LLD together would account for 86% of the precision planting market.[26]  Deere and Monsanto said they would fight the decision.[27] Bayer may have changed all of this.

References:


[1] Brazil is the world’s largest agrochemical market at US$10 billion, China is the 3rd largest agrochemical market at US$4.5 billion, Argentina is 8th at US$1.5 billion and India is 9th at US$1 billion. Source: ETC Group, “Merge-Santo: New Threat to Food Security.” Briefing Note. March 22, 2016. http://www.etcgroup.org/content/merge-santo-new-threat-food-sovereignty

[2] 2014 data. ETC Group, “Breaking Bad: Big Ag Mega-Mergers in Play.” ETC Group Communique 115. December 2015. http://www.etcgroup.org/sites/www.etcgroup.org/files/files/etc_breakbad_23dec15.pdf

[3] Ibid.

[4] Ibid.

[5] Aaron Kirchfield, Ed Hammond, Dinesh Nair, “ChemChina Is in Talks to Acquire Syngenta.” Bloomberg News, Nov 12 2015 – 5pm EST. http://www.bloomberg.com/news/articles/2015-11-12/chemchina-is-said-to-be-in-talks-to-acquire-syngenta

[6] Anonymous, “ChemChina Offers Over $43 Billion for Syngenta” Bloomberg News, February 3, 2016. http://www.bloomberg.com/news/articles/2016-02-03/chemchina-offers-to-purchase-syngenta-for-record-43-billion

[7] Michael Shields and Greg Roumeliotis, “U.S. Clearance for ChemChina deal sends Syngenta stock soaring.” The Globe and Mail. August 22, 2016. http://www.theglobeandmail.com/report-on-business/international-business/european-business/us-clearance-for-chemchina-deal-sends-syngenta-stock-soaring/article31484832/

[8] Syngenta, “ChemChina and Syngenta receive clearance from the Committee on Foreign Investment in the United States (CFIUS),” Press Release, August 22, 2016. http://www4.syngenta.com/media/media-releases/yr-2016/22-08-2016

[9] Lindsay Whipp and Christian Sheperd, “Takeover green light sparks anger in US.” Financial Times. September 7, 2016. (printed edition).

[10] 2014 data. Anonymous, “Top 20 Global Agrochem Firms: Growth Slowing Down,” Agropages.com. 30 October 2015; company reporting.

[11] Ibid.

[12] Jacob Bunge, “DuPont CEO Says Merger With Dow Still on Track.” The Wall Street Journal. July 26, 2016. http://www.wsj.com/articles/dupont-profit-beats-as-costs-decline-1469529581

[13] 2014 data. Anonymous, “Top 20 Global Agrochem Firms,” Agropages.com

[14] Jacob Bunge and Dana Mattioli, “Bayer Proposes to Acquire Monsanto.” The Wall Street Journal. May 19, 2016. http://www.wsj.com/articles/bayer-makes-takeover-approach-to-monsanto-1463622691

[15] Greg Roumeliotis and Ludwig Burger, “Bayer clinches Monsanto with improved $66 billion bid” Reuters. September 15, 2016. http://www.reuters.com/article/us-monsanto-m-a-bayer-deal-idUSKCN11K128

[16] Reuters, “Agrium and Potash Corp Are Merging to Make a Giant Fertilizing Company.” Fortune. September 12, 2016. http://fortune.com/2016/09/12/agrium-potash-corp-merger/

[17] 2014 Data. ETC Group, “Breaking Bad”

[18] 2014 Data. ETC Group, from publicly available information.

[19] Guy Chazan and James Fontanella-Khan, “Bayer urged by Monsanto shareholders to raise bid further.” Financial Times. September 6, 2016. http://www.ft.com/cms/s/0/9219b46c-7422-11e6-b60a-de4532d5ea35.html#axzz4KGHWYNW5

[20] Rod Nickel and Siddarth Cavale, “Fertilizer majors Potash and Agrium to merge, face tough scrutiny.” Reuters. September 12, 2016. http://www.reuters.com/article/us-agrium-m-a-potashcorp-idUSKCN11I0Z0

[21] 2014 data. Anonymous “Top 20 Global Agrochem Firms.” Agropages.com

[22] ETC Group, compiled from company reports

[23]John Deere & Company, “John Deere and The Climate Corporation Expand Options for Farmers.” Press Release. November 3, 2015. https://www.deere.ca/en_US/corporate/our_company/news_and_media/press_releases/2015/corporate/2015nov03-corporaterelease.page

[24] United States Department of Justice, “Justice Department Sues to Block Deere’s Acquisition of Precision Planting.” Press Release. August 31, 2016. https://www.justice.gov/opa/pr/justice-department-sues-block-deere-s-acquisition-precision-planting

[25] Ibid.

[26] Ibid.

[27] Ibid.

Sep 092016
 
Martyn Fletcher via Flickr

Martyn Fletcher via Flickr

by Claire Hope Cummings (Project Syndicate)

HONOLULU – A cynical move is underway to promote a new, powerful, and troubling technology known as “gene drives” for use in conservation. This is not just your everyday genetic modification, known as “GMO”; it is a radical new technology, which creates “mutagenic chain reactions” that can reshape living systems in unimaginable ways.

Gene drives represent the next frontier of genetic engineering, synthetic biology, and gene editing. The technology overrides the standard rules of genetic inheritance, ensuring that a particular trait, delivered by humans into an organism’s DNA using advanced gene-editing technology, spreads to all subsequent generations, thereby altering the future of the entire species.

It is a biological tool with unprecedented power. Yet, instead of taking time to consider fully the relevant ethical, ecological, and social issues, many are aggressively promoting gene-drive technology for use in conservation.

One proposal aims to protect native birds on Hawaii’s Kauai Island by using gene drives to reduce the population of a species of mosquito that carries avian malaria. Another plan, championed by a conservation consortium that includes US and Australian government agencies, would eradicate invasive, bird-harming mice on particular islands by introducing altered mice that prevent them from producing female offspring. Creating the “daughterless mouse” would be the first step toward so-called Genetic Biocontrol of Invasive Rodents (GBIRd), designed to cause deliberate extinctions of “pest” species like rats, in order to save “favored” species, such as endangered birds.

The assumption underlying these proposals seems to be that humans have the knowledge, capabilities, and prudence to control nature. The idea that we can – and should – use human-driven extinction to address human-caused extinction is appalling.

I am not alone in my concern. At the ongoing International Union for the Conservation of Nature (IUCN) World Conservation Congress in Hawaii, a group of leading conservationists and scientists issued an open letter, entitled “A Call for Conservation with a Conscience,” demanding a halt to the use of gene drives in conservation. I am one of the signatories, along with the environmental icon David Suzuki, physicist Fritjof Capra, the Indigenous Environmental Network’s Tom Goldtooth, and organic pioneer Nell Newman.

The discussions that have begun at the IUCN congress will continue at the United Nations Convention on Biological Diversity in Mexico this December, when global leaders must consider a proposed global moratorium on gene drives. Such discussions reflect demands by civil-society leaders for a more thorough consideration of the scientific, moral, and legal issues concerning the use of gene drives.

As I see it, we are simply not asking the right questions. Our technological prowess is largely viewed through the lens of engineering, and engineers tend to focus on one question: “Does it work?” But, as Angelika Hilbeck, President of the European Network of Scientists for Social and Environmental Responsibility (ENSSER) argues, a better question would be: “What else does it do?”

When it comes to the GBIRd project, for example, one might ask whether the “daughterless mouse” could escape the specific ecosystem into which it has been introduced, just as GMO crops and farmed salmon do, and what would happen if it did. As for the mosquitos in Hawaii, one might ask how reducing their numbers would affect the endangered hoary bat species.

Ensuring that these kinds of questions are taken into account will be no easy feat. As a lawyer experienced in US government regulations, I can confidently say that the existing regulatory framework is utterly incapable of assessing and governing gene-drive technology.

Making matters worse, the media have consistently failed to educate the public about the risks raised by genetic technologies. Few people understand that, as MIT science historian Lily Kay explains, genetic engineering was deliberately developed and promoted as a tool for biological and social control. Those driving that process were aiming to fulfill a perceived mandate for “science-based social intervention.”

Powerful tools like genetic modification and, especially, gene-drive technology spark the imagination of anyone with an agenda, from the military (which could use them to make game-changing bio-weapons) to well-intentioned health advocates (which could use them to help eradicate certain deadly diseases). They certainly appeal to the hero narrative that so many of my fellow environmentalists favor.

But the fact is that we have not created the intellectual infrastructure to address the fundamental challenges that gene drives – not to mention other powerful technologies – raise. And now we are supposed to suspend our critical faculties and trust the techno-elites’ promise to use gene drives responsibly in the service of seemingly positive environmental goals. No open public discussion is needed, apparently. But why should we blindly believe that everything is under control?

In my view, the focus on using gene-drive technology for conservation is a ruse to gain public acceptance and regulatory cover. Why expose something to public scrutiny and possible restraints when you can usher it in through the back door by pretending it will do some good? The risks are too obvious for gene-drive advocates to risk talking about them.

In my 20-plus years of researching and reporting on transgenic technologies, I thought I had seen the worst of the false promises and hype that they engender. But gene drives are unlike anything we have witnessed, and amount to the ultimate test of our self-control. Can we really trust science to guide us, or do we recklessly throw in our lot with technological “silver bullets” as the way forward?

Fortunately, we still have a choice. The fact that gene drives can change the basic relationship between humanity and the natural world is both a challenge and an opportunity. We can do now what we should have done a long time ago, with regard to both nuclear and transgenic technologies: start paying more attention to the dangers of human ingenuity – and more respect to the genius of nature.

Genetic “extinction” technology rejected by international group of scientists, conservationists and environmental advocates

 

Posted Sep. 1, 2016

OAHU, HAWAI’I — As thousands of government representatives and conservationists convene in Oahu this week for the 2016 World Conservation Congress, international conservation and environmental leaders are raising awareness about the potentially dangerous use of gene drives — a controversial new synthetic biology technology intended to deliberately cause targeted species to become extinct.

Members of the International Union for the Conservation of Nature (IUCN), including NGOs, government representatives, and scientific and academic institutions, overwhelmingly voted to adopt a de facto moratorium on supporting or endorsing research into gene drives for conservation or other purposes until the IUCN has fully assessed their impacts. News of the August 26 digital vote comes as an important open letter to the group is being delivered.

Scientists and environmental experts and organizations from around the globe have advocated for a halt to proposals for the use of gene drive technologies in conservation. Announced today, a long list of environmental leaders, including Dr. Jane Goodall, DBE, genetics professor and broadcaster Dr. David Suzuki, Dr. Fritjof Capra, entomologist Dr. Angelika Hilbeck, Indian environmental activist Dr. Vandana Shiva and organic pioneer and biologist Nell Newman, have lent their support to the open letter: “A Call for Conservation with a Conscience: No Place for Gene Drives in Conservation.” The letter states, in part: “Gene drives, which have not been tested for unintended consequences, nor fully evaluated for ethical and social impacts, should not be promoted as conservation tools.”

“Gene drives are basically a technology that aims for a targeted species to go extinct,” explains ecologist and entomologist Dr. Angelika Hilbeck, president of the European Network of Scientists for Social and Environmental Responsibility (ENSSER). “While this may appear to some conservationist professionals to be a ‘good’ thing and a ‘silver bullet’ to handle complicated problems, there are high risks of unintended consequences that could be worse than the problems they are trying to fix.”

Both the leading developers of the technology and also those concerned about gene drives will be attending this week’s Congress and holding events to raise awareness, hype promises or highlight the potential hazards of gene drives. One near-term gene drive proposal, promoted by U.S.-based non-governmental organization Island Conservation, intends to release gene drive mice on islands to eradicate them. Another led by the University of Hawai’i would develop gene drive mosquitoes for use in Hawaii to combat avian malaria which affects honeycreeper birds. The debate around gene drives is likely to resurface later this year at the negotiations of the United Nations Biodiversity Convention in Cancun Mexico in December.

“Gene drives, also known as ‘mutagenic chain reactions,’ aim to alter DNA so an organism always passes down a desired trait, hoping to change over time the genetic makeup of an entire species,” explains Dr. Vandana Shiva of Navdanya. “This technology would give biotech developers an unprecedented ability to directly intervene in evolution, to dramatically modify ecosystems, or even crash a targeted species to extinction.”

“Genetic extinction technologies are a false and dangerous solution to the problem of biodiversity loss,” said Erich Pica, president of Friends of the Earth. “There are real, sustainable, community-based conservation efforts that should be supported. We are concerned that genetic extinction technologies will allow new destructive agricultural practices and even use by the military. Speculative conservation claims are at best an unfounded diversion or smokescreen. We support those in the IUCN who recognize the gravity of irreversible and irresponsible technologies such as gene drives.”

Signatories of the letter, which include indigenous organizations and legal experts, raised legal and moral questions, citing an “ethical threshold that must not be crossed without great restraint.”

“From military testing to GMO crops, and now gene drives, Hawai’i should not be treated as a test zone for risky and experimental technologies,” said Walter Ritte, Native Hawaiian activist and hunter. “What happens in Hawai’i must be discussed with residents, not decided from a lab on the other side of the continent. Hawaiians should decide what is best for Hawai’i.”

Some of the signing organizations will be holding a Knowledge Café event as part of the IUCN World Conservation Congress at 8:30 am (HST) on Monday, September 5. The event will be live streamed at www.synbiowatch.org/gene-drives.

In response to upcoming proposals to release gene drive organisms in Hawaii, the local organization Hawai’i SEED will be hosting an educational session on gene drives in the evening on Tuesday, September 6. See http://bit.ly/2bwZEuG for details.

Note to editors:

1. A short briefing outlining concerns about gene drives prepared by the Civil Society Working Group on Gene Drives is available at http://synbiowatch.org/2016/08/reckless-driving/. A copy of the letter “A Call for Conservation with a Conscience: No Place for Gene Drives in Conservation” and a complete list of signatories is available at http://www.synbiowatch.org/gene-drives-letter/.

2. The organizers of the letter are inviting other organizations to join as signatories. Additional organizational signatures can be sent to: genedrives@synbiowatch.org.

3. More details about the Island Conservation Project to release gene drive mice are available in this article: http://baynature.org/article/re-coding-conservation/. Plans to develop gene drives for Hawaii are being developed by the lab of Dr. Floyd A, Reed of Hawaii University: http://hawaiireedlab.com/wpress/?p=2270.

4. The IUCN Motion on Synthetic Biology and Conservation (motion No. 95) was supported by 71 Governments and 355 NGOs (out of a total of 544 votes cast). It includes the following amendment on gene drives: “CALLS UPON the Director General and Commissions with urgency to assess the implications of gene drives and related techniques and their potential impacts on the conservation and sustainable use of biological diversity as well as equitable sharing of benefits arising from genetic resources, in order to develop IUCN guidance on this topic, while refraining from supporting or endorsing research, including field trials, into the use of gene drives for conservation or other purposes until this assessment has been undertaken.” A breakdown of the vote was today made available to IUCN members.

###

Expert contacts: Dana Perls, (925) 705-1074, dperls@foe.org; Jim Thomas, (514) 516-5759, jim@etcgroup.org

Communications contacts: Kate Colwell, (202) 222-0744, kcolwell@foe.org; Trudi Zundel, (266) 979-0993, trudi@etcgroup.org